Sonocatalysis degradation of methyl orange using zinc sulfide carbon nanotubes nanocatalyst
Authors
Abstract:
Dye sewage is dangerous problem in our environmental aquatics that cause generation of harmful effects for living organism. In this work, because of simplicity, easy operation, high efficiency and no creating secondary pollutants, ultra sound radiation applied for degradation of a synthetic dye, methyl orange using zinc sulfide nano particles decorated on carbon nanotubes as nanocatalyst. ZnS/CNTs prepared by co-precipitation of carbon nanotubes and zinc aceate. Methyl orange (MO) is a cationic dye that used widely in some medical uses, coloring paper, dyeing cottons, wools, coating for paper stocks and etc. For achieving highest degradation efficiency several parameters such as pH, amount of nanocatalyst, initial dye concentration and time were evaluated and optimized. Results showed that highest degradation efficiency (100%) obtained at 0.3 gr of nanocatalyst while initial dye concentration is 30 mg/L at pH, 2. Comparison of several methods for degradation of methyl orange showed feasibility of applied method. In addition, reusability of nanocatalyst was suitable for degradation of MO in real wastewater samples.
similar resources
Photo-degradation of Methylene Orange by zinc-sulfide nanoparticles synthesized via hydrothermal method
Background and Objective: In the present research, the synthesis and characterization of ZnS nanoparticles in zinc blend crystallite phase via hydrothermal method were reported. Advanced oxidation processes using nanophotocatalysts are one of the most efficient methods for removing the dyes with complex organic compounds from textile and industrial wastewaters. The photocatalytic performance of...
full textAdsorption of Methyl orange dye from Water solutions by carboxylate group functionalized multi-walled Carbon nanotubes
The present study was carried out to investigate the potential of carboxylate group functionalized Multi-walled carbon nanotubes (MWCNT−COOH) adsorbent for the removal of Methyl orange (MO) textile dye from aqueous solutions. The effects of pH, shaking time and temperature on adsorption capacity were studied; the contact time to obtain equilibrium at 298 ˚K was fixed at 25 min. The effect of te...
full textAdsorption of Methyl orange dye from Water solutions by carboxylate group functionalized multi-walled Carbon nanotubes
The present study was carried out to investigate the potential of carboxylate group functionalized Multi-walled carbon nanotubes (MWCNT−COOH) adsorbent for the removal of Methyl orange (MO) textile dye from aqueous solutions. The effects of pH, shaking time and temperature on adsorption capacity were studied; the contact time to obtain equilibrium at 298 ˚K was fixed at 25 min. The effect of te...
full textSynthesis, characterization and degradation activity of Methyl orange Azo dye using synthesized CuO/α-Fe2O3 nanocomposite
This study investigated the photo-degradation of methyl orange (MO) as a type of azo dye using a CuO/α-Fe2O3 nanocomposite. A CuO/α-Fe2O3 powder with a crystalline size in the range of 27-49 nm was successfully prepared using simple co-precipitation along with a sonication method. The characterization of the synthesized sample was done via XRD, FE-SEM, EDS, FTIR and DRS analyses. The Tauc equat...
full textPhotocatalytic degradation of methyl orange and Congo red using C,N,S-tridoped SnO2 nanoparticles
In this study, the photocatalytic degradation of methyl orange and Congo red dye was investigated inaqueous solution using C,N,S-tridoped SnO2 nanoparticles as a nano photocatalyst. The degradationwas carried out under different conditions including the photocatalyst amount, initial concentrationand pH of the solution. The results indicated that the degradation of methyl orange and Congo redwas...
full textPhotocatalytic degradation of methyl orange using ZnO and Fe doped ZnO: A comparative study
ZnO and 2% Fe doped ZnO photocatalytic nanomaterials were successfully synthesized by successive ionic layer adsorption and the reaction (SILAR) method. The characterizations of these nanomaterials were carried out using XRD, SEM and EDX techniques. XRD study shows that the samples have a hexagonal wurtzite crystal structure, size of which is in the range 21-23 nm. SEM shows nanoflakes or nano ...
full textMy Resources
Journal title
volume 3 issue 4
pages 243- 248
publication date 2017-10-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023